Cerebral Tissue Oxygenation Impairment in Children with Pneumonia.

M. Lacerenza^{1,*}, V. Rossi², S. Zanelli², C.Amendola³, D. Contini³, M. Buttafava¹, G. Zuccotti^{2,5}, A. Torricelli^{3,4} and V. Calcaterra²,⁶

¹PIONIRS s.r.l., Milano, Italy; ²Pediatric Department, Buzzi Children's Hospital, Milano, Italy; ⁴Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy; ⁵Department of Biomedical and Clinical Science, University of Milano, Italy; ⁶Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy. *mail: lacerenza@pionirs.com

1. INTRODUCTION:

Pneumonia is a major concern in pediatric healthcare, due to its potential to cause severe tissue and cerebral hypoxia [1,2]. This condition affect neurological adversely can development [3], necessitating precise and timely monitoring. Standard clinical practices do not include continuous cerebral oxygenation monitoring in this specific population. Near-Infrared Spectroscopy (NIRS) is a valuable non-invasive technique for measuring the concentration of oxyhemoglobin (O_2Hb) and deoxyhemoglobin (HHb) in human tissues, including the brain, providing crucial insights into cerebral hemodynamics. NIRS Among methodologies, **Time-Domain NIRS** (TD-NIRS) offers superior precision and reproducibility, making it particularly suitable for clinical applications.

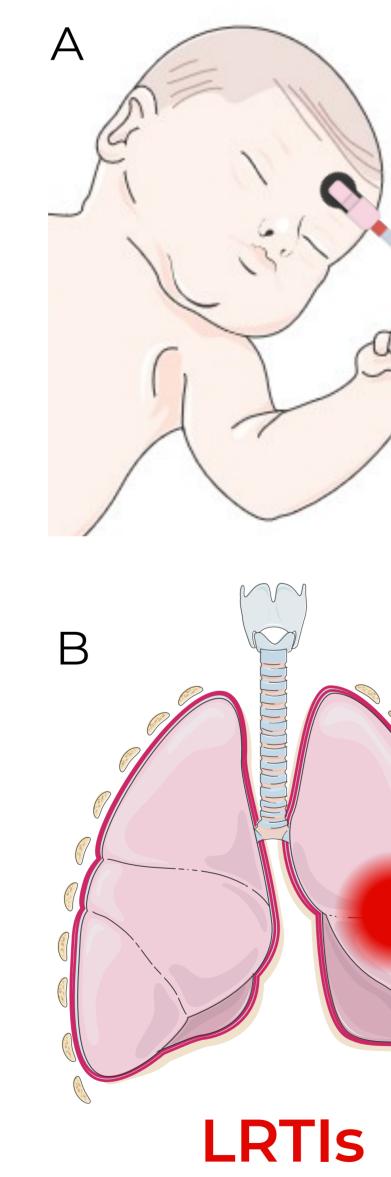


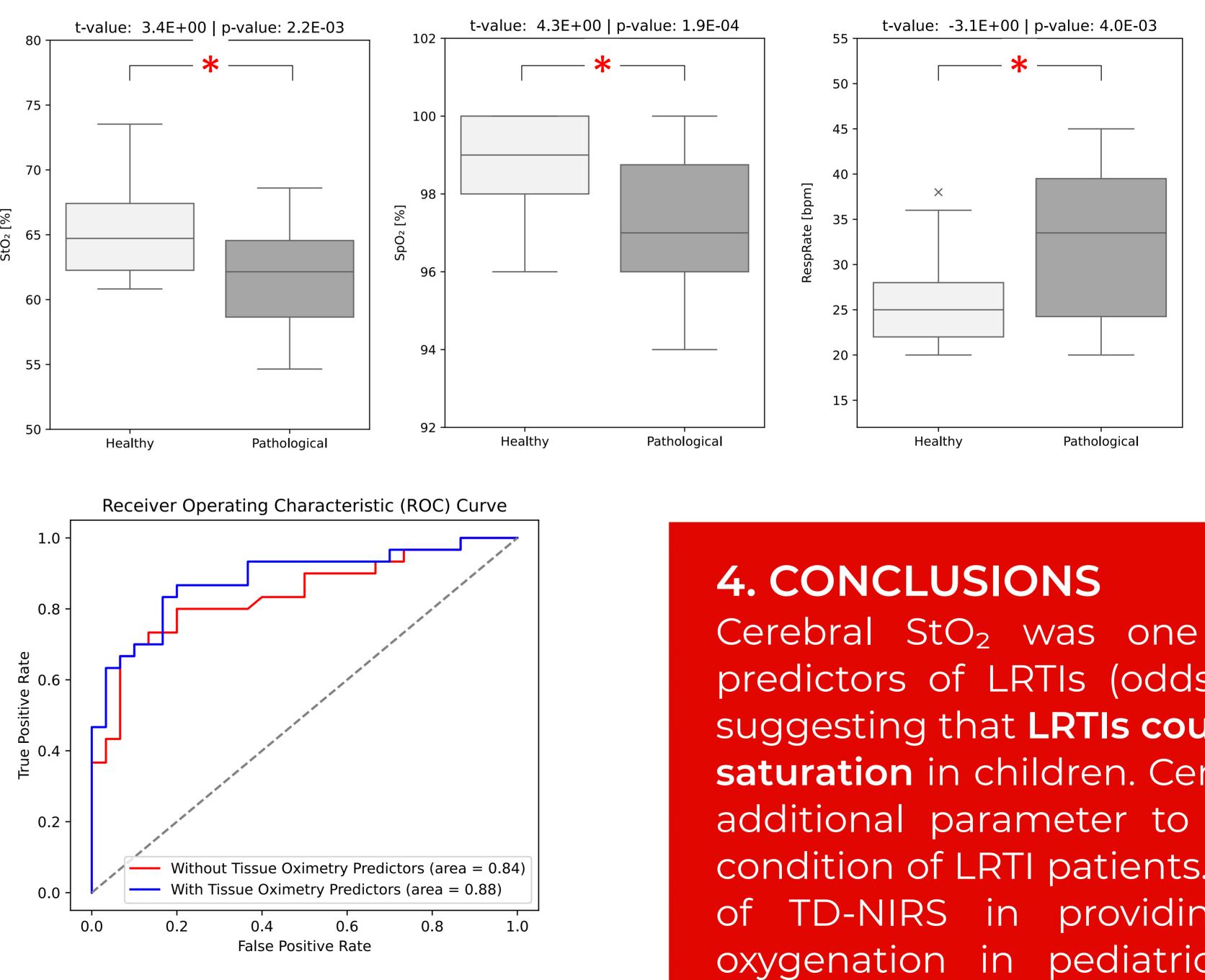
Figure 1 : A) Sketch of the G5 optical probe positioning on the prefrontal cortex, 5 re-applications. B) Simplified rapresentation of Lower Respiratory Tract Infections.

2. METHODS:

The study involved 60 participants, divided in 30 children with lower respiratory tract infections (LRTIs) and 30 age and sex matched healthy controls. TD-NIRS measurements were acquired with a NIRSBOX tissue oximeter (PIONIRS srl, Milan, Italy) [4], targeting the left frontal cerebral region, exploiting the "Goccia" G5 probe with 2.5 cm source-detector distance (Fig. 1 A).

Quantitative evaluation of cerebral tissue saturation (StO₂) and tissue total hemoglobin content (tHb) was performed real-time (1Hz acquisition frequency) across 5 repositioning of the optical probe lasting 5 s each. Demographic and clinical data (hematocrit, SpO₂, heart rate, respiratory rate, BMI, head circumference) were collected for all participants. A multiple logistic regression model was used to explore significance of all acquired variables and their interplay in identifying pathological subject versus controls. Two-tailed t-tests have also been performed to check for significant differences in specific physiological values between controls and LRTIs patients (Fig. 2).

30 Healthy **30** Pathological



UNIVERSITÀ DEGLI STUDI DI MILANO

MILANO 1863

Figure 3 : Comparison of the ROC curve resulting form the logistic regression model including cerebral tissue oximetry (Blue) vs without it (Red).

3. RESULTS:

LRTIs exhibited cerebral StO₂ levels Children with approximately 2.6 units lower than healthy controls (p = 0.002), Fig. 2. The multivariate logistic regression model identified SpO₂, StO₂, and Respiratory Rate as significant regressors in distinguishing LRTIs patients vs controls. Importantly, cerebral StO₂ values did not correlate with peripheral SpO₂ (pearson's r = 0.22), indicating that these two indicators may provide complementary information.

> The logistic regression model including cerebral oximetry data from TD-NIRS showed higher area under the Receiver Operating Characteristic (ROC) curve compared to the one without them (Fig. 3).

Figure 2 : Boxplots of average values of measured physiological parameters, t-test results on the top. Healthy (light gray) vs pathological (dark gray) subjects. Red asterisks show significant differences between groups (p-value <0.05, two tailed t-test).

Cerebral StO₂ was one of the key and independent predictors of LRTIs (odds ratios = 0.45, p-value = 0.002), suggesting that LRTIs could significantly effected cerebral saturation in children. Cerebral StO₂ might therefore be an additional parameter to record for better assessing the condition of LRTI patients. These findings highlight the role of TD-NIRS in providing deeper insights into brain oxygenation in pediatric patients, indicating potential independence of peripheral oxygen saturation